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Abstract. Multicenter integrals appearing in the Har-
tree—Fock—Roothaan equations for molecules are calcu-
lated using different kinds of series expansion formulas
obtained from the expansions of integer and noninteger
n Slater-type orbitals, in terms of W*-exponential-type
orbitals (where o = 1, 0, —1, —2,...) at a displaced center,
that form complete orthonormal sets and are represent-
ed by linear combinations of integer n Slater-type
orbitals. The convergence of these series is tested by
calculating concrete cases. The accuracy of the results is
quite high for quantum numbers, screening constants,
and location of orbitals.
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1 Introduction

In the treatment of multicenter integrals it is often
necessary to transform operators and Slater-type orbi-
tals (STOs), which depend upon the coordinates of two
particles, in such a way that the coordinates of the
pertaining particles appear in a computationally more
convenient form. In most cases this requires a separation
of variables which can be accomplished with the help of
so-called addition theorems. Probably the best-known
example of addition theorems for operators is the
Laplace expansion of the Coulomb potential,
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where r- = min(ry, ) and r~ = max(rq, ). Here the
spherical harmonics Sj,, are determined by the relation
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where P, are normalized associated Legendre func-

tions. For complex spherical harmonics Sj,(0,¢) =
Ylm(er(p)s
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and for real spherical harmonics
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It should be noted that our definition of phases for
complex spherical harmonics Y, = Y., differs from
the Condon—Shortley phases [1] by the sign factor.

The earliest approaches for the evaluation of multi-
center integrals consisted of using the relatively com-
plicated addition theorems of STOs to separate the
integration variables from those related to the geometry
of the molecule [2, 3,4, 5,6,7,8,9,10, 11, 12, 13, 14, 15,
16, 17, 18]. The great progress made in both applied
mathematics and computer science has led a number
of researchers to focus their efforts on the elaboration
of new approaches directed to computing multicenter
integrals over STOs. Unfortunately, they also were
not entirely successful. To our knowledge, many
authors; (see Refs. [19, 20, 21, 22, 23] and references
therein) have addressed this problem and although many
improvements have been made in the past few years by
the use of computers, an efficient general program for
the calculation of multicenter integrals over STOs is not
yet available. We have had considerable success in using
the addition theorems in the evaluation of multicenter
molecular integrals. In previous work [24], by the use of
complete orthonormal sets of W*-exponential-type orb-
itals (ETOs), where o = 1, 0, —1, —2,..., all the multicenter
multielectron integrals with integer and noninteger n
STOs (ISTOs and NISTOs) were expressed in terms of
overlap integrals between the basis functions and the
ISTOs being translated. For the calculation of overlap
integrals of ISTOs and NISTOs efficient computer pro-
grams are available in our group [25, 26, 27, 28].
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Therefore, by using the computer programs for the
overlap integrals one can calculate the arbitrary multi-
center integrals with ISTOs and NISTOs appearing in
the determination of various properties for molecules
when the Hartree-Fock—Roothaan approximation is
employed.

For obtaining the expansion of STOs about a new
center one of us in Ref. [24] introduced the new complete
orthonormal sets of W*-ETOs defined by

w0 = (1m0 T
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where o =1, 0, -1, -2, -3.... Here L”,(x) are the
generalized Laguerre polynomials. We notice that the
arbitrary multicenter multielectron molecular integrals
can be calculated using different kinds of translation
formulas for the STOs obtained in Ref. [24] from the
expansion of STOs, in terms of ¥*-ETOs at a displaced
center, that form complete orthonormal sets and are
represented by linear combinations of STOs.

In the Hartree—Fock—Roothaan equations for mole-
cules, the matrix elements of nuclear-attraction and
electron-repulsion operators between the determinantal
wave functions of molecules are expressed through the
multicenter integrals with the same operators. The
multicenter nuclear-attraction and electron-repulsion
integrals over STOs examined in this work have the
following form:
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(i= 1,2andg=a,b,c,d) #;andR, are the radius vectors
of the electron and the nucleus relative to the molecule-
fixed axes centered at a reference origin O, and
Tpr (¢;,7y) and Ty (¢,7) are the normalized complex or
real NISTOs centered on the nuclei g and h, respectively:

Yo (67) = (20" 202" + 1) e 78,,(0, )
(8)
Here I'(x) denotes the gamma function [29]. The

normahzed ISTOs can be obtained from Eq. (7) for
n" = n, where n is an integer:
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The aim of this report is, by the use of addition
theorems for é and ISTOs, to obtain the series expan-
sion formulas for the multicenter nuclear-attraction
and electron-repulsion integrals through the overlap

where  pf=nilim;, pi* =n*l'm! Rgh=f3h

integrals with the arbitrary integer and noninteger values
of principal quantum numbers of STOs. We notice that
the method used in this work is an extension of the
results of Refs. [30, 31] to the case of NISTOs in which
the formulas for the multicenter integrals over ISTOs
have been established.

2 Use of addition theorem for STOs

In order to evaluate multicenter nuclear-attraction and
electron-repulsion integrals, we use in Egs. (6) and (7)
the series expansion formulas for NISTOs, obtained
using W*-ETOs, where =1, 0, -1, -2,..., in terms of
ISTOs at a displaced center [24]:
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where R = R,, and the expansion coefficients VN are
determined as follows:
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Here F, (k) = k!/[p!(k—n)!] and the quantities S, /m,uvo
are the overlap integrals between the normalized NIS-
TOs and ISTOs:
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We notice that for R, = 0 the expansion coefficients
1N are reduced to the Konecker symbol, i.e.,
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Taking into account the addition theorem (Eq. 10) in
Eqgs. (6) and (7) we obtain the following series expansion
formulas in terms of two-center nuclear-attraction and
one-center electron-repulsion integrals:

Now—1

plp1 ({l C]yRcaaRab) - 1/1111 E E E
N|‘>C>O 1 v =0 ¢ ——v'
w=1v{=0 ¢|=—v

N = =
pr/l*q]/l (Cll 9 Cll ;Rca)[qu’l (Cla C/] ;Rab) }
(16)



[p’l‘p’l* B2y2 (Cl ) Cla C2> ¢27Rca7Rba7Rda)

N =1y
= lim Z Z Z /* r Cl C] ca)

Ny NNy =00 =1v,=0 ¢\ =—v} o

Ny Wr— 1 V2 Nz/ ,U/z—l V’Z
DD P BN

=1 v=0 62=-v2 wh=1v,=0 ==V,

/ /
/* / (Czagzdea)Ipl*q’lzpq,(Cla51;527C2) 3 (17>

— — /I — )N A
where ¢ = p\Vio', g2 = w202 ¢ = psvhoh and

Ip’l‘p’l* (éla C/ﬁ]_éab) = [p]p’l* (Cl , Cll ; O;I_éah)
o 1
— [ 2GR CT) dR L (18)

plp1 p,p2 (Ch(p(z, Cz) p]p1 7pzp7 (é/l é]y CZa (27 0 0 0)

* - - 1
— [T @R

21
X Xp;(CZa?a2)x;’;(C/277a2)dVldV2 (19)

It should be noted that using the orthonormality re-
lation (Eq. 15), all the two-center Coulomb (a=c# b =
d), two-center (a = ¢ = b # d) and three-center (¢ = ¢ #
b # d) hybrid and two-center (a = b # ¢ # d), three-cen-
ter (a=b#c#d), and four-center (a#c#b#d)
electron-repulsion integrals can be calculated from
Eq. (17).

3 Use of addition theorem for é

For the calculation of two-center nuclear-attraction
and one-center electron-repulsion integrals we use in
Egs. (18) and (19) the expansion formula for the product
of two spherical harmonics both with the same center
[32]. Then we obtain
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Here J, Sl and J, “imynslm,  Are nuclear-attraction
and electron- repulswn 1ntegrals respectively. Thus, the
multicenter integrals of ISTOs and NISTOs appearing in
the Hartree—Fock—Roothaan equations for molecules
are expressed through the basic integrals in Egs. (23)
and (24).

In order to calculate the basic integrals we use Eq. (1)
for the Laplace expansion of the Coulomb potential in
Eqgs. (23) and (24). Then with the aid of the method set
out in Ref. [30] we find for the two-center basic nuclear-
attraction integrals the following analytical expression:
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Here I'(k,x) is the incomplete gamma function [29].

With the calculation of the one-center basic electron-
repulsion integrals we use Eq.(25) in Eq. (24) and
integrate over spherical angles of the second electron.
Then using the results [29]

I'(o) = p(o,x) + T, x) (27)
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Fig. 1. The convergence of series in Eq. (16) for the three-center
nuclear attraction integral /3513311 Wwith various values of
o for translation of Slater-type orbitals (atomic units); N;" = 15,
gy =5 (=46, =14, Ryp=18, 0, =126° @. =315°,
Ry =2, ()ac = 130°, Pac = 215

where
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Here 1 = z5/z; and F is the hypergeometric function
determined by

.'Xﬁ,% Zoc: k ’ (32)
= Ok
where
I'(o+ n)
(= 1,0, = sz + 1) (b = 1) = =
(33)

As can be seen from Egs. (25), (26), (30), and (31), the
two-center nuclear-attraction and one-center electron-
repulsion basic integrals are expressed through the
gamma and hypergeometric functions, several proce-
dures for the evaluation of which can be found in the
literature [33].

The accuracy of computer results for the two- and
three-center nuclear-attraction integrals with STOs can
be determined by the use of spherically symmetrical or

Table 1. The values of two-center nuclear attraction integrals over integer and noninteger n Slater-type orbitals obtained in the molecular

(lined-up and non-lined-up) coordinate system (atomic units)

n* / m 4 N'* I m’ r R 0 10) Eq. (20) Af
2 1 0 10.8 2 1 0 53 5.4 20 90 1.35970293363843 x 107! 20
2.15 1 0 12.8 2.7 1 0 8.5 5.4 30 120 1.42535414658415 x 107! 19
3 2 2 7.12 2 1 1 3.8 10.5 10 60 —1.80415671180953 x 107* 19
3.5 2 2 9.7 2.78 1 1 9.7 10.5 10 60 —1.27099610692958 x 107* 19
4 3 2 15.9 5 3 3 10.7 15.5 40 30 —4.65385676682645 x 107° 21
4.77 3 2 18.5 5.45 3 3 8.1 21.5 50 150 9.89161909073411 x 107’ 21
6 4 4 14.8 6 5 5 20.8 25.1 60 180 1.98425009417673 x 107* 18
6.4 4 4 14.4 6.7 5 5 25.8 32.5 60 180 8.25827340203041 x 107 18
8 7 7 21.4 7 6 6 20.8 53.2 70 210 5.16357446188277 x 10~° 17
8.25 7 7 25.1 7.6 6 6 18.2 75.3 70 210 2.38053768054153 x 107 18

10 9 =7 12.5 10 8 -8 10.2 100.7 80 240 ~1.58615189629610 x 1076 19

1045 9 -7 15.2 10.4 8 -8 8.1 100.7 80 240 —6.27670149239174 x 1077 18

15 13 13 31.5 14 13 13 23.8 0.7 0 0 9.64834293778156 x 107" 18

15.6 13 13 35.5 14.8 13 13 20.8 0.5 0 0 5.50364514764564 x 107! 17

25 24 24 15.5 25 24 24 10.4 15.5 36 36 2.34470131643294 x 107> 18

25.6 24 24 12.3 25.2 24 24 9.6 18.5 36 36 3.79963686060315 x 107> 17

40 20 20 9.2 40 20 20 9.2 8.5 54 144 1.17546693251303 x 107> 16

40.5 20 20 12.9 40.3 20 20 7.9 12.8 108 288 7.30477020966995 x 10~ 16

50 21 20 12.9 50 21 20 7.9 38 126 324 1.30238004549549 x 107> 15

50.6 21 20 9.4 50.8 21 20 6.7 38 126 324 5.90189696138292 x 1073 15
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angular independence properties (see Egs.15, 16 in Ref.
[34]),

! !
2
Z Limurrm (6 C5R, 0, 0) = Z
p

ot )
X Duzeri (5 R,0,0) (34)
Lo
, 2
Z Z \Litmaerm (C,C5 R0, 9)]
m=—Ilm'=-1
min(Z,7") 5
- I Ak T ANG I;Ra ) )
; 1+5zo| wiier: (L U5 R,0,0)] (35)

and different sets of expansion formulas (Egs. 16, 17) for
a=1, 0, -1, -2,..,. respectively. Here k& =n* n and
K =n"n'

4 Numerical results and discussion

As can be seen from Egs. (16) and (17) and Egs. (20)
and (21), the overlap, basic nuclear-attraction, and
electron-repulsion integrals occur in the multicenter
nuclear-attraction and electron-repulsion integrals over
STOs. The computer programs presented in Refs. [26,
27, 28] for overlap integrals are used in this study. On
the basis of analytical relations (Egs. 25, 26, 30, 31, 32)
for the basic integrals and series expansion formulas
(Egs. 16, 17) for the multicenter integrals we also
constructed a program. This program can be used in
the calculation of multicenter nuclear-attraction and
electron-repulsion integrals over ISTOs and NISTOs
with arbitrary values of parameters.

In Fig. 1, for 2 < N-1 we present the convergence of
series in Eq. (16) obtained using coefficients (Egs. 11,
12) for expansion of real ISTOs and NISTOs. Here 4 is
the upper limit of the indices v| and v}.The series accu-
racy Af, = fy_1 — f; for the three-center nuclear-at-
traction integrals is shown in Fig. 1, where the quantities
fv_1 are the values of integrals for A =N — 1. We see
that the convergence of the series with respect to
vi and v} is rapid; therefore, we can include only a few
terms obtained from the summations over indices
vi and 5. The full lines in Fig. 1 represent the results
of calculations made using Egs. (11) and (12), obtained
from W~>-ETOs, ¥~ '-ETOs, W’-ETOs, and ¥~ '-ETOs,
respectively.

The computation time required for the calculation of
multicenter nuclear-attraction and electron-repulsion
integrals is not given in the tables owing to the fact that
the comparison cannot be made with the different
computers used in other work. It is seen from the algo-
rithm presented for multicenter integrals that our
computation times are satisfactory. For instance, for
two-center nuclear-attraction integrals with quantum

sets n* =25.6, =24, m=24, (=123, n* =252,
I'=24, m"=24, ’=9.6 and R,, = 18.5, 0., = 36°,
Pap = 36, the computation time is about 0.6 ms.

The results of the calculations in atomic units for the
two-center, three-center nuclear-attraction, one-center,
two-center Coulomb, and two-center hybrid electron-
repulsion integrals obtained with a Pentium 233 MHz
computer (using TURBO PASCAL 7.0 language) are
represented in Tables 1, 2, and 3, respectively. The
comparative values obtained from Egs. (11) and (12)
with the expansion of different W*-ETOs are shown in
these tables. We see from the tables that the accuracy of
the computer results for different expansion formulas
obtained from W~ '-ETOs, W’-ETOs, and ¥~'-ETOs is
satisfactory.
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